
 IJMIE Volume 3, Issue 5 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

621

May
2013

__

 Abstract—

The general packet classification problem has received a great deal of attention over the last decade.

The ability to classify packets into flows based on their packet headers is important for QoS,

security, virtual private networks (VPN) and packet filtering applications. Multi-field packet

classification has evolved from traditional fixed 5-tuple matching to flexible matching with arbitrary

combination of numerous packet header fields. In this project, we introduce a method for producing

more efficient probabilistic suffix tree (PST) classifiers. Our empirical model is general enough to

model many disparate problems. We considered the next-generation packet classification problems

where more than 5-tuple packet header fields would be classified. When matching multiple fields

simultaneously, it is difficult to achieve both high classification rate and modest storage in the worst

case. Our classifier can be considered among the most algorithms which have high throughput and

efficiency.

Keywords— Probabilistic suffix tree (PST), field-programmable gate array (FPGA), packet

classification, pipeline, SRAM.

* PG Student, M.E (EST), PSN College of Engineering and Technology,Tirunelveli.

** M.E, (Ph.D) Professor, PSN College of Engineering and Technology, Tirunelveli

Probabilistic Suffix Tree Based Packet

Classification on FPGA

S.B.Dhanya
*

Mr V.Gopi
 **

 IJMIE Volume 3, Issue 5 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

622

May
2013

I. INTRODUCTION

The development of the Internet demands next-generation routers to support a variety of network

applications, such as firewall processing, Quality of Service (QoS) differentiation, virtual private

networks, policy routing, traffic billing, and other value added services. In order to provide these

services, the router needs to classify the packets into different categories based on a set of

predefined rules, which specify the value ranges of the multiple fields in the packet header. Such a

function is called multi-field packet classification. In traditional network applications, packet

classification problems usually consider the fixed 5-tuple fields: 32-bit source/destination IP

addresses, 16-bit source/destination port numbers, and 8-bit transport layer protocol. In OpenFlow,

up to 12-tuple header fields are considered [3].

 Due to the rapid growth of the rule set size, as well as the link rate, multi-field packet classification

has become one of the fundamental challenges to design high speed routers. For example, the

current link rate has been pushed beyond 40 Gbps, which requires processing a packet every 8 ns in

the worst case. Such throughput is impossible using existing software-based solutions. On the other

hand, mapping decision-tree-based packet classification algorithms onto SRAM-based pipeline

architecture appear to be a promising alternative. Thus in conventional method, the decision tree is

used for packet classification.

Here, we develop a decision forest, to partition a given set of 12-tuple rules into multiple subsets so

that each subset uses a small number of header fields to build a decision tree of certain depth. To

tackle the problem of rule duplication when building the decision tree, we use two optimization

techniques, called rule overlap reduction and precise range cutting. Then the tree is mapped onto the

pipeline architecture, by a node-to-stage mapping scheme which allows imposing the bounds on

the memory size as well as the number of nodes in each stage. As a result, the memory utilization of

the architecture is maximized. The memory allocation scheme also enables using external SRAMs

to handle even larger rule sets. We use the dual-port high-speed Block RAMs provided in

state-of-the-art FPGAs to achieve a high throughput of two packets per clock cycle (PPC).

Next-generation packet classification on more header fields poses an even bigger challenge. Most

of the existing work in high-throughput packet classification is based on ternary content addressable

memory (TCAM) [5]–[7] or a variety of hashing schemes such as Bloom Filters [8]–[10]. However,

TCAMs are not scalable with respect to clock rate, power consumption, or circuit area, compared to

 IJMIE Volume 3, Issue 5 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

623

May
2013

SRAMs [11]. Most of TCAM-based solutions also suffer from range expansion when converting

ranges into prefixes [6], [7]. Hashing-based solutions such as Bloom Filters have become popular

due to their time performance and high memory efficiency [12]. However, hashing cannot provide

deterministic performance due to potential collision and is inefficient in handling wildcard or

prefix matching [13]. A secondary module is always needed to resolve false positives inherent in

Bloom Filters, which may be slow and can limit the overall performance [14].

 In this paper, we propose a Probabilistic Suffix Tree (PST)for packet classification. The Probability

Suffix Tree is a data structure that, allows many problems on strings (sequence of characters) to be

solved quickly. For the problems on the strings to be solved, it does not require the exact match

between the header values of the packet to be matched and the reference packet. In PST, the suffix

values of the reference packet and the packet to be classified are compared. If they matches, the

packet gets into next stage and if not the packet is rejected. By using PST, it‘s very easy to classify

complex strings. Advantages in using the Probability Suffix Tree are its high detection accuracy and

high throughput.

The rest of this paper contained as follows: In Section 2, we review the related work. Section 3

presents our approach for generation of probabilistic suffix tree (PST) for efficient packet

classification. Section 4 presents the pipeline architecture. Section 5 presents the implementation

details. Finally, Section 6 concludes the paper.

II. RELATED WORK

A. FPGA designs for 5-tuple packet classification

Although traditional 5-tuple packet classification is considered a saturated area of research, little

work has been done on FPGAs. Most of existing FPGA implementations of packet classification

engines are based on decomposition-based packet classification algorithms, such as BV [15] and

DCFL [11].

Lakshman et al. [15] propose the Parallel Bit Vector (BV) algorithm, which is a

decomposition-based algorithm targeting hardware implementation. It performs the parallel

lookups on each individual field first. The lookup on each field returns a bit vector with each bit

 IJMIE Volume 3, Issue 5 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

624

May
2013

representing a rule. A bit is set if the corresponding rule is matched on this field; a bit is reset if the

corresponding rule is not matched on this field. The result of the bitwise AND operation on these bit

vectors indicates the set of rules that matches a given packet. The BV algorithm can provide a high

throughput at the cost of low memory efficiency. By combining TCAMs and the BV algorithm,

Song et al. [7] present an architecture called BV-TCAM for multi-match packet classification. A

TCAM performs prefix or exact match, while a multi-bit trie implemented in Tree Bitmap [23] is

used for source or destination port lookup.

Taylor et al. [11] introduce Distributed Crossproducting of Field Labels (DCFL), which is also a

decomposition-based algorithm leveraging several observations of the structure of real filter sets.

They decompose the multi-field searching problem and use independent search engines, which can

operate in parallel to find the matching conditions for each filter field. Instead of using bit vectors,

DCFL uses a network of efficient aggregation nodes, by employing Bloom Filters and encoding

intermediate search results. As a result, the algorithm avoids the exponential increase in the time or

space incurred when performing this operation in a single step. The authors predict that an

optimized implementation of DCFL can provide over 100 million packets per second (MPPS) and

store over 200K rules in the current generation of FPGA or application-specific integrated circuit

(ASIC) without the need of external memories. However, their prediction is based on the maximum

clock frequency of FPGA devices and a logic intensive approach using Bloom Filters. This

approach may not be optimal for FPGA implementation due to long logic paths and large routing

delays. Furthermore, the estimated number of rules is based only on the assumption of statistics

similar to those of the currently available rule sets.

B. Hardware Accelerators for open flow

While OpenFlow switch technology is evolving, little attention has been paid on improving the

performance of 12-tuple packet classification. Luo et al. [15] propose using network processors to

accelerate the OpenFlow switching. Similar to the software implementation of the OpenFlow

switching, hashing is adopted for simple rules while linear search is performed on the complex

rules. When the number of complex rules becomes large, using linear search leads to low

throughput. Moreover, hashing-based solutions may suffer from hash collision and cannot produce

 IJMIE Volume 3, Issue 5 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

625

May
2013

deterministic throughput. Naous et al. [12] implement the OpenFlow switch on NetFPGA which is

a Xilinx Virtex-2 Pro 50 FPGA board tailored for network applications. They use hashing for

simple rules and a small TCAM implemented on FPGA for complex rules. Due to the high cost to

implement TCAM on FPGA, their design can support no more than few tens of complex rules.

Though it is possible to use external TCAMs for large rule tables, high power consumption of

TCAMs remains a big challenge. To the best of our knowledge, none of existing schemes for

OpenFlow-like packet classification can sustain throughput above 10 Gbps in the worst case where

packets are of minimum size i.e., 40 bytes.

C. Decision tree

Decision-tree-based algorithms (such as HyperCuts) usually scale well and are suitable for rule sets

where the rules have little overlap with each other. But they suffer from rule duplication which can

result in memory explosion in the worst case. Hence an intuitive idea is to partition a table of

complex rules into different subsets. The rules within the same subset specify nearly the same set of

header fields. For each rule subset, we build the decision tree based on the specified fields used by

the rules within this subset.

After rule set partitioning, the rule duplication due to wildcard fields will be reduced. However, the

Hi- Cuts/HyperCuts algorithm may still suffer from rule duplication due to its own inefficiency,

such as rule replication. The following two optimization techniques, called rule overlap reduction

and precise range cutting are used to overcome inefficiency due to rule replication. In Rule overlap

reduction, we store the rules which will be replicated into child nodes, in a list attached to each

internal node. These rule lists are called internal rule lists. In Precise range cutting, we seek the

cutting points which result in the minimum number of rule duplication, instead of deciding the

number of cuts for this field.

Then, using the partitioned rule set, a decision tree is built. For each partitioned rule set a single

decision tree is formed and thus we get a decision forest. The decisions trees thus formed are

mapped into a pipeline architecture each. Each level of decision tree forms, one stage in the pipeline

structure.

 IJMIE Volume 3, Issue 5 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

626

May
2013

III. PROBABILISTIC SUFFIX TREE GENERATION

Our goal is to generate the probabilistic suffix tree (PST) for efficient packet classification. Initially,

the incoming packet header field is converted into hexadecimal value by a logic and then using the

probability of occurrences of the field values, a suffix tree is formed. This is known to as Probability

suffix tree. This tree is matched with the probability suffix tree formed for the database entries.

Initially, the header fields are classified into number of rules based on different values of the header

fields as shown in Table 1 below.

The Table 1 is constructed only based on 5-tuples of the header field. Now, the tables are

constructed based on 12-tuples for efficient classification. In Table 1, SA/DA are 32-bit fields,

SP/DP are 16-bit fields, ingress port field is variable field, VLAN ID, VLAN priority, Type of

service are some of the fields used in 12-tuple packet classification. These rules may be divided into

several rule sets based on the common value ranges of the header fields.

 TABLE 1

 EXAMPLE 5-TUPLE RULE SET

The binary ranges of the header fields are converted into corresponding hexadecimal values. Then

the hexadecimal sequence is used for the construction of probabilistic suffix tree.

The hexadecimal sequence is initially taken for PST construction. For example, let the sequence be

‗abcabc‘. The corresponding PST is as shown in Fig 1. The sequence is taken and probability of

occurrences of the various pairs of hexa decimal values is considered for the suffix of the sequence.

 IJMIE Volume 3, Issue 5 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

627

May
2013

Based on the various combinations of pairs a tree is constructed and its probability value is specified

in it.

IV. PIPELINE ARCHITECTURE

To achieve line-rate throughput, we map the PST a parallel multi-pipeline architecture with linear

pipelines, as shown in Fig. 2. Each pipeline is used for traversing a decision tree as well as matching

the rule lists attached to the leaf nodes of that tree. The pipeline stages for tree traversal are called

the tree stages while those for rule list matching are called the rule stages. Each tree stage includes a

memory block storing the tree nodes and the cutting logic which generates the memory access

address based on the input packet header values. At the end of tree traversal, the index of the

corresponding leaf node is retrieved to access the rule stages. Since a leaf node contains a list of

listSize rules, we need listSize rule stages for matching these rules. All the leaf nodes of a tree have

their rule lists mapped onto these listSize rule stages. Each rule stage includes a memory block

storing the full content of rules and the matching logic which performs parallel matching on all

header fields.

6

2 2

2 2

2

2

a

c
b

c a b

(0.33,0.33,0.33)

(0,0,1)

(1,0,0)

(0,1,0)

 (0,1,0)
 (0,0,1)

(1,0,0)

Fig 1: PST for the sequence ‗abcabc‘

 IJMIE Volume 3, Issue 5 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

628

May
2013

The PST thus built is then mapped into the pipeline architecture. Here the PST in rule stages are

compared with the PST constructed out of the current packet header field in the tree stages. The

pipeline architecture is shown in Fig 2. If more than one tree in the rule stage matches with the

current packets PST tree, the tree with highest probability value is considered for the exact match

for the current packet header.

Fig 2: Block diagram of 2-D linear pipeline architecture

Each incoming packet goes through all the pipelines in parallel. A different subset of header fields

of the packet may be used to traverse the trees in different pipelines. Each pipeline outputs the rule

ID or its corresponding action. The priority resolver picks the result with the highest priority among

the P outputs from the pipelines.

 V. IMPLEMENTATION RESULTS

To implement the PST for 1K 12-tuple rules in FPGA, we examined the performance results of each

tree. our mapping scheme outperformed the static mapping scheme with respect to both memory

and node distribution. We mapped the above probabilistic suffix tree onto the pipeline architecture.

Since Block RAMs were not used efficiently for blocks of less than 1K entries, we merged the rule

lists of the first two pipelines and used distributed memory for the remaining rule lists.

 IJMIE Volume 3, Issue 5 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

629

May
2013

Fig 3: Distribution over tree pipeline stages

 VI. CONCLUSION

This paper presented a novel probability suffix-tree-based linear multi-pipeline architecture on

FPGAs for wire-speed multi-field packet classification. We considered the next-generation packet

classification problems where more than 5-tuple packet header fields would be classified. Several

optimization techniques were proposed to reduce the memory requirement of the state-of-the-art

decision-tree-based packet classification algorithm, so that 10K 5-tuple rules or 1K 12-tuple rules

could fit in the on-chip memory of a single FPGA. Our architecture provided the reconfiguration

due to the linear memory-based architecture. Extensive simulation and FPGA implementation

results demonstrate the effectiveness of our solution. The FPGA design supports 10K 5-tuple rules

or 1K OpenFlow-like complex rules and sustains over 40 Gbps throughput for minimum size (40

bytes) packets. Our future work includes porting our design into real systems and evaluating its

performance under real-life scenarios such as dynamic rule updates.

 IJMIE Volume 3, Issue 5 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

630

May
2013

REFERENCES

[1] M. Casado, T. Koponen, D.Moon, and S. Shenker, ―Rethinking packet forwarding hardware,‖ in

Proc. HotNets—VII, 2008, pp. 1–6.

[2] N. McKeown, T. Anderson,H.Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J.

Turner, ―OpenFlow: Enabling innovation in campus networks,‖ SIGCOMM Comput. Commun. Rev., vol.

38, no. 2, pp. 69–74, 2008.

[3] OpenFlow Foundation, ―OpenFlow Switch Specification, Version 1.0.0,‖ 2009. [Online]. Available:

http://www.openflowswitch.org/

documents/openflow-spec-v1.0.0.pdf.

 [4] P. Gupta and N. McKeown, ―Algorithms for packet classification,‖ IEEE Network, vol. 15, no. 2, pp.

24–32, 2001.

[5] F. Yu, R. H. Katz, and T. V. Lakshman, ―Efficient multimatch packet classification and lookup with

TCAM,‖ IEEE Micro, vol. 25, no. 1, pp. 50–59, Jan. 2005.

[6] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, ―Algorithms for advanced packet

classification with ternary CAMs,‖ in Proc. SIGCOMM, 2005, pp. 193–204.

[7] H. Song and J. W. Lockwood, ―Efficient packet classification for network intrusion detection using

FPGA,‖ in Proc. FPGA, 2005, pp. 238–245.

[8] S. Dharmapurikar, H. Song, J. S. Turner, and J. W. Lockwood, ―Fast packet classification using bloom

filters,‖ in Proc. ANCS, 2006, pp. 61–70.

[9] I. Papaefstathiou and V. Papaefstathiou, ―Memory-efficient 5D packet classification at 40 Gbps,‖ in

Proc. INFOCOM, 2007, pp. 1370–1378.

[10] A. Nikitakis and I. Papaefstathiou, ―A memory-efficient FPGA-based classification engine,‖ in Proc.

FCCM, 2008, pp. 53–62.

[11] W. Jiang and V. K. Prasanna, ―Sequence-preserving parallel IP lookup using multiple SRAM-based

pipelines,‖ J. Parallel Distrib. Comput., vol. 69, no. 9, pp. 778–789, 2009.

[12] H. Yu and R. Mahapatra, ―A power- and throughput-efficient packet classifier with n bloom filters,‖

IEEE Trans. Comput., vol. 60, no. 8, pp. 1182–1193, Aug. 2011.

[13] W. Jiang and V. K. Prasanna, ―Large-scale wire-speed packet classification on FPGAs,‖ in Proc.

FPGA, 2009, pp. 219–228.

[14] I. Sourdis, ―Designs & algorithms for packet and content inspection‖ Ph.D. dissertation, Comput. Eng.

Div., Delft Univ. Technol., Delft, The Netherlands, 2007. [Online]. Available:

http://ce.et.tudelft.nl/publicationfiles/ 1464_564 sourdis phdthesis.pdf

[15] G. S. Jedhe, A. Ramamoorthy, and K. Varghese, ―A scalable high throughput firewall in FPGA,‖ in

Proc. FCCM, 2008, pp. 43–52.

http://ce.et.tudelft.nl/publicationfiles/

